A new computational approach for mechanical folding kinetics of RNA hairpins.

نویسندگان

  • Song Cao
  • Shi-Jie Chen
چکیده

Based on an ensemble of kinetically accessible conformations, we propose a new analytical model for RNA folding kinetics. The model gives populational kinetics, kinetic rates, transition states, and pathways from the rate matrix. Applications of the new kinetic model to mechanical folding of RNA hairpins such as trans-activation-responsive RNA reveal distinct kinetic behaviors in different force regimes, from zero force to forces much stronger than the critical force for the folding-unfolding transition. In the absence of force or a low force, folding can be initiated (nucleated) at any position by forming the first base stack and there exist many pathways for the folding process. In contrast, for a higher force, the folding/unfolding would predominantly proceed along a single zipping/unzipping pathway. Studies for different hairpin-forming sequences indicate that depending on the nucleotide sequence, a kinetic intermediate can emerge in the low force regime but disappear in high force regime, and a new kinetic intermediate, which is absent in the low and high force regimes, can emerge in the medium force range. Variations of the force lead to changes in folding cooperativity and rate-limiting steps. The predicted network of pathways for trans-activation-responsive RNA suggests two parallel dominant pathways. The rate-limiting folding steps (at f = 8 pN) are the formation of specific basepairs that are 2-4 basepairs away from the loop. At a higher force (f = 11 pN), the folding rate is controlled by the formation of the bulge loop. The predicted rates and transition states are in good agreement with the experimental data for a broad force regime.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural parameters affecting the kinetics of RNA hairpin formation

There is little experimental knowledge on the sequence dependent rate of hairpin formation in RNA. We have therefore designed RNA sequences that can fold into either of two mutually exclusive hairpins and have determined the ratio of folding of the two conformations, using structure probing. This folding ratio reflects their respective folding rates. Changing one of the two loop sequences from ...

متن کامل

RNA folding: conformational statistics, folding kinetics, and ion electrostatics.

RNA folding is a remarkably complex problem that involves ion-mediated electrostatic interaction, conformational entropy, base pairing and stacking, and noncanonical interactions. During the past decade, results from a variety of experimental and theoretical studies pointed to (a) the potential ion correlation effect in Mg2+-RNA interactions, (b) the rugged energy landscapes and multistate RNA ...

متن کامل

Exploring the complex folding kinetics of RNA hairpins: I. General folding kinetics analysis.

Depending on the nucleotide sequence, the temperature, and other conditions, RNA hairpin-folding kinetics can be very complex. The complexity with a wide range of cooperative and noncooperative kinetic behaviors arises from the interplay between the formation of the loops, the disruption of the misfolded states, and the formation of the rate-limiting base stacks. With a rate constant model and ...

متن کامل

Exploring the complex folding kinetics of RNA hairpins: II. Effect of sequence, length, and misfolded states.

The complexity of RNA hairpin folding arises from the interplay between the loop formation, the disruption of the slow-breaking misfolded states, and the formation of the slow-forming native base stacks. We investigate the general physical mechanism for the dependence of the RNA hairpin folding kinetics on the sequence and the length of the hairpin loop and the helix stem. For example, 1), the ...

متن کامل

Characterization of the mechanical unfolding of RNA pseudoknots.

The pseudoknot is an important RNA structural element that provides an excellent model system for studying the contributions of tertiary interactions to RNA stability and to folding kinetics. RNA pseudoknots are also of interest because of their key role in the control of ribosomal frameshifting by viral RNAs. Their mechanical properties are directly relevant to their unfolding by ribosomes dur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 96 10  شماره 

صفحات  -

تاریخ انتشار 2009